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Spatio—Temporal Chaos in the Transverse
Section of Gyrotron Resonators

Markus |. Airila and Olgierd DumbrajsSenior Member, IEEE

Abstract—Nonstationary oscillations in gyrotrons are investi- IIl. GYROTRON EQUATIONS

gated for large azimuthal indices of modes leading in the trans- . . .
verse section of gyrotron resonators to spatial chaos in azimuthal _E/€ctron motion and the time- and spatially dependent

direction. Limiting values of the azimuthal index m of the mode, high-frequency field in the resonator can be calculated from
beyond which stationary single-mode operation of a gyrotron be- the following [4]:
comes impossible, are found.
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I N CONNECTION with striving to develop high-frequencyy,here), is the complex transverse momentum of the electron
high-power gyrotrons needed for modern fusion reactorsy malized to its initial absolute valug, — (ﬂiow/QﬂIIOC)Z

it is appropriate to stu_dy under what circumstances chaos-l.igﬁdg = (1/8)a2B2 ymy are dimensionless axial and azimuthal
processes can occur in gyrotrons. Recently [1], [2], we studigdordinates, respectivelf , = v1o/c andfyo = vjo/c are

the onset of stochastic oscillations in gyrotrons by means g$rmalized electron velocitiesy = Bio/Byo is the pitch
the self-consistent theory describing nonstationary processfagtor, A = 2(w — w.)/8%,w is the frequency mismatch,
Complicated alternating sequences of regions of stationary, ay72r = 28B/v.. is the electron cyclotron frequency in

tomodulation, and chaotic oscillations were found in the plar®@Hz, B is the magnetic field in T,y iS the relativistic
of the generalized gyrotron variables: cyclotron resonance migetor of electronsf(¢, &, 7) is the high-frequency field in
match and dimensionless current. Traces of period doublifig resonatory = (1/8)/310[3”_02%15 is the dimensionless
and intermittency on the route to chaos were discovered.time, § = 8[3ﬁ0[31§[w — w(¢)]w ! describes variation of
those studies, it was assumed that the transverse structuréhefcut-off frequencyw(¢) along the resonator axigj is the
RF field in the resonator is fixed and can be represented byui-off frequency at the exit from the resonator, and the
single TE mode of a cylindrical resonator. If the diameter afimensionless current
a resonator is much larger than the wavelength, as is the case 2 (2_7TR )
in hi i [=94-10"*Iyfof18 — =LA 2
in high-frequency and high-power gyrotrons, many resonator =9. 080810 5 o (2)
2 Yeet(VZ = m2).J2 ()
modes may fall within the cyclotron resonance band. In such a _ _ ) ' )
case, as was suggested in [3], it is meaningful to go over fronfi§re.lo is the beam currentin amperefsis the Bessel function,
single-mode representation of RF field to a spatio—temporal d&-iS the azimuthal index of the mod,is the wavelengthiz.
scription in which the envelope of the RF field is a continuou$ the electron beam radius, ands the zero of the derivative

function of transversal coordinates. In [4], this approach w ig"the Bessel function. This description is valid for operation at

. . : the fundamental cyclotron resonance.
generalized to the case of variable azimuthal as well as longi-

tudinal coordinates. In the present paper, we present a sim.pIThe system of (1) has to be supplemented by the standard

" _ P X <
and mathematically transparent method of solving the und%‘rl‘%Ial condition for the momentury(0) = exp(iv) with 0 <

: . ) , ) o o < 2w, and by the boundary condition for the field at the
lying equations. Detailed calculations result in specifying Clitsntrance to the interaction space
ical values of the azimuthal index of the mode beyond which

gyrotron oscillations become irregular in the azimuthal direc- f(0,7)=0 3

tion at particular values of cyclotron resonance mismatch and . . .
) p y w?nch means that at the entrance the field must vanish. At the
dimensionless current. . . .

exit from the interaction spacé & (,.) the so-called reflec-

tionless boundary condition is applied
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[Il. NUMERICAL METHOD The coefficient matrix has a block tridiagonal form

There is no need for introduction of the special variable I

— ¢ in (1), as was done in [4]. This restricts the class of so- wl B  al
lutions and complicates the matter. Equation (1) can be solved ! !
directly numerically by generalizing the method used in [1] into N aml B al
two spatial dimensions. We discretize the domain of interest -
with step sized\(, A&, andAr. The values off at grid points
are denoted as ail B a1l

n n
ayl afl

FGAC, KAE, nAT) = [y, . ] ] ]
where! is the K x K identity matrix

wherej = 0,1,...,J; k = 0,1,..., K — 1; andn =
. ) \ o by —b2 ba
0, 1, .... Using this notation, we can replace the derivatives in
(1) by the following approximations: ba by —by
n n—+ n B =
f __f S T S ! 5)
¢’ <Ac> b b =ho
I © ~bs by by
o 1AT . is a cyclic tridiagonal matrix due to the periodic boundary con-
of it = @ dition in ¢, and
0¢ 2A¢ ' 1

.. o . . . . a1 = 7382
This discretization scheme is centered in both spatial dimen- (AQ)

sions. The current term is replaced by " 1
=-2vn+1 - -
I : T YE vntl-v
—— ; Q)
=y (7a¢ kag nar 0). (@ oac /—+ = S
- v=0 V n+ I-v
As far as the boundary condition (4) is concerned, we can iso- i
late the sin.gularity'ir.l it if the functiod f ({, &, f')/ag satisfies b = (AC) T Ar
the Lipschitz condition. As a result, we obtain a difference ap- 1
proximation for (4) by = IAE
. =171k The first equation in (1) is solved by a standard Runge—Kutta
fre+ 2vn —C algorithm using the already known fiefd(, £, ) to obtain the
discrete current term.

IV. COMPUTATIONS

ka T = Fiet e
+Z e )_0 9)

The effect of the azimuthal mode numberon the stability

fork=0,1,..., K -1 of gyrotron oscillations was studied by solving the system (10)
The discrete problem can now be written in the followingoy different values ofn and finding the lowest one at which sta-
matrix form: tionary oscillations break down. Many combinationg\oénd’

were used in the computations—they were chosen to cover the

AT = e (10) region marked “stationary” in [1, Fig. 1].
We started all computations with an initial condition
where
. 2mé . ¢
=y o [ Mo o [lea )T f(¢ € 0)= {0.1—{—0.015111 <£max)} 51n<<0m> (11)
" =(cho -+ Gx1 o v Groa) which simulates a field profile with only one maximum in the
with axial direction and a small perturbation around the azimuth.
Here,émax = (m/4)a233 ym.
=0 In the calculations, we have assumed a cylindrical resonator
0,k [6(¢) = 0] with (oue = 15, fixed the valuesi o = 0.426
S =gt — fﬂ fort<j<J-1, andg)p = 0.316 for velocities corresponding t@ = 1.35 and
y the accelerating voltagé = 92 kV, and used a 6% 40 or
&= Z fJ 1,k fJ-,k 61 x 60 spatial grid depending om. The latter one leads to

Vn+l—v ' a problem of 3660 unknowns and, consequently, the coefficient
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Fig. 1. I =0.01,A = 0.60,andm = 45. (a) Stationary RF field amplitude Fig. 2. I = 0.01, A = 0.60, andm = 50. (a) RF field amplitude at the
at the output cross section as a function of azimuthal angle. (b) RF fiedditput cross section as a function of azimuthal angte&t950 (solid line) and
amplitude at the output cross section as a function of azimuthal angle and timer = 4000 (dashed line). (b) RF field amplitude as a function of azimuthal
(c) Axial profile of the stationary RF field. angle and time. (c) Axial profile of the RF field at= 4000.

matrix has about 1Oelements. Since only about 40f these Moving to a slightly highern while staying at the same point
are nonzero, the solution can be efficiently found using sparisehe (A, I) plane, we find a dramatic difference. As is shown in
matrix techniques. We applied the IMSL routibd SLZG[5] Fig. 2, withm = 50 there is a transition period during which the
and were able to proceed with small temporal stéps £ 0.1) field changes from the optimal shape shown in Fig. 1(c) into a
at a reasonable rate. less favorable configuration with two maxima in the axial direc-
tion, shown in Fig. 2(c). During this transition caused by com-
V. RESULTS petition of modes with different axial indices, the field structure

. dv of th luti ¢ in th varies rapidly in time and space and resembles transient chaos.
Our extensive study of the solutions for (1) in the parameter o iy ,qirate spatio—temporal chaos, we show similar figures

space reveals that essentially three types of oscillations ex}a}l — 0.10, A = 0.20, andm — 10. For such a high current

Starting with a smalh in the region ‘?f station_ary_ OSCiIIat?Ons'the field soon becomes very irregular both in axial and azimuthal
we can expect practically the same kind of axial field profile an@oordinates (see Fig. 3)

temporal behavior as was seen in our previous study [1] in onIy-I-he values ofn.,; for differentl andA are shown in Fig. 4.

one spatial dimension. However, with increasingwe always st some points in the, 1) plane, the difference between sta-
encounter a limit where the stationary solution breaks down. VlYSnary and nonstationary oscillations shows up too slowly for

denote bymn.;; the highestn yielding a stationary field. Practical detection. We estimate the error of the given values of
Stationary oscillations are illustrated by Fig. 1, which COlL, - to bet2

responds to the operating parametérs= 0.01, A = 0.60,
andm = 45. In Fig. 1(a), we show the RF field amplitude at
¢ = (,ut as afunction of azimuthal angle. In Fig. 1(b), the same
guantity is plotted as a function of the angle and time. Fig. 1(c) Our study shows that there exist maximal values;; of the
shows the axial field profile. azimuthal indexm beyond which stationary single-mode op-

VI. CONCLUSION



AIRILA AND DUMBRAJS: SPATIO-TEMPORAL CHAOS IN THE TRANSVERSE SECTION OF GYROTRON RESONATORS 849

03 I 0.1 03

<10f- 0.1

T T TTTTTIT

0.03

’

;
! .
3 b / ’ ’ Viore Y
3 Loy 1 0.0,
10, /12 ! 15 22 '40 Soasy 46 X ,,"; o =Y
3
1 i

stationary

3
>
T T TTTTTT

- _
°c
o
N
/
5

TR
’7&?_\

7%

00037777700, 22 30 a5 Y 0.003
/'\An \ L ”’Q 3
_ ’\/77 \ Yo S
na oscillations 7?7>>\ oo _udh > no oscillations)
0.001 T T T — T T '<| T 0.001
0.8 0.6 -0.4 02 0.0 0.2 0.4 06 0.8

A

Fig. 4. The upper limit inn for stationary gyrotron oscillations in the\( I')

plane (numbers in boldface). The background shows the topology of different
kinds of oscillations of a gyrotron according to one-dimensional calculations
[1]. Here, white regions correspond to stationary oscillations, gray regions
correspond to automodulation, and dark regions to chaotic oscillations. The
contours of constant efficiency are shown by the dashed curves, and the point
of maximum efficiencyp** = 0.75 is marked by a cross.

A = 0.75 andI = 0.02. However, this is not in conflict with
our results presented in Fig. 4. The point is that in the present
study we restrict ourselves to cylindrical cavitiés$ 0 in (1)]

05 and consider only the reflectionless case [(4)]. It can be expected
that reflections [6], and tapering [8], [9] significantly lower the
_ 0 border of onset of stochastic oscillations. Generalized theory
Zoal with allowance for reflections will be published somewhere else
[10].
o2 Finally, we would like to mention the subject of controlling
% s 10 5 chaos which has not yet been studied in gyrotrons. For example,
¢ one could imagine to control chaos by converting a chaotic
©) attractor to any one of a large number of possible attracting

time-periodic motions by making only small time-dependent
Fig. 3. I =0.10, A = 0.20,m = 10. (a) Momentary RF field amplitude o) hations of an available system parameter [11]. In the case
at the output cross section as a function of azimuthal angte=at>70. (b) RF . .
field amplitude as a function of azimuthal angle and time. (c) Axial profile oPf gyrotrons form < me,; in the regions where only temporal
the RF field atr = 570 andy = 0. chaos occurs, one would wish to stabilize definite shapes
of |f({)], e.g., those with only one or two maxima which
géovide high-gyrotron efficiency. Is this feasible by making
only small time-dependent adjustments of control parameters
A andI? Probably yes, if done quickly enough. A study of this
possibility is beyond the scope of the present paper.

eration of a gyrotron is no longer possible. Surprisingly, the
critical numbers are rather lown(..;; < 46) for a high-power
gyrotron with typical operation parameters= 1.35 andU =
92 kV (compare with [4]) even in the region of highest efficien
cies. This puts natural limits for the attempts to minimize Ohmic
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